RGD-targeted Nanoparticles Expressing Flt23k Inhibit CNV
In a Murine CNV Model

Xiaohui Zhang, Ling Luo, Hironori Uehara, Tadashi Miya, Christina Mamalis, Alex Jones, Bonnie Archer, Balamurali K. Ambati. John Moran Eye Center, University of Utah, Salt Lake City, Utah; VA Salt Lake City Health Care System, Salt Lake City, Utah

Purpose
To determine whether RGD.Fl23k PLGA nanoparticles can regress choroidal neovascularization (CNV) in murine and primate CNV models.

Methods
We prepared ratiometric nanoparticles which were blank, loaded with pcDNA3.1/Flt23k, or loaded with pCMV/Flt23k conjugated with RGD oligopeptides (which home to alpha-5-beta-3 integrin). All these nanoparticles were dissolved in MES buffer. A total volume of 4 μl (plasmid concentration is 0.1μg/μl) was delivered to each mouse, and similar volumes of MES buffer served as blank control. Murine CNV was induced by 532 nm laser or subretinal injection of adeno-associated virus mediated small hairpin ribonucleic acid (shRNA) alpha-VEGF. Tail vein injection was performed 2 weeks after induction of CNV. CNV regression was evaluated 2 weeks after tail vein injection in histological sections and CNV volume quantified using newly developed software, Seg3D in vivo image. RGD.Fl23k.NR.NP was detected by immunostaining in CNV sections

Quantification of CNV and fibrosis volumes
- Seg3D software in vivo (Fig. 3, 4)
- Histology (Fig. 5)

Fig. 1: RGD-targeted nanoparticles (red) home to CNV lesion but not to normal tissue (40x). Blue: DAPI staining.

Fig. 2: Alpha 5 selectively expressed in CNV (40x).

Fig. 3: RGD-targeted nanoparticles regress CNV. CNV decreased 24% with treatment (p=11, p=0.05, 2W).

Fig. 4: Systemic RGD.Fl23k.NP is non-inferior in efficacy to intravitreal anti-VEGF Ab.

Fig. 5: H&E staining shows that the CNV lesion significantly regressed in RGD.Fl23k.NR.NP treated group compared with the controls in aas.shRNA.Fl-1 induced CNV models (40x).

RGD(Flt23k.NR.NP) only present in CNV lesion, 5 expression in CNV area was confirmed by immunostaining. H&E stained sections show the CNV size was dramatically decreased in RGD(Flt23k.NP injected mice (treatment group) as compared to the other three control groups (Flt23k.NR.NPs, Blank NR.NPs, or MES buffer). The treatment group mice CNV volume was decreased by 21%, which showed significantly more reduction than observed with unlabeled nanoparticles, blank nanoparticles, or MES control (p value <0.05). As a positive control, CNV lesions treated an intravitreal injection of an anti-mouse VEGF antibody were decreased by 11% (p=0.1). No systemic toxicity was detected. Life span of treated mouse > 1 years.

Summary
One intravenous injection of targeted nanoparticles delivering Flt23k intrapersors regressed CNV murine models.

RGD oligopeptide enhanced selective localization.
No toxicity was observed.

RGD.Fl23k.NP could serve as an intravenous alternative or adjunct to monthly intravitreal injections.