Photonic Crystal Light Collectors In Fish Retina Improve Vision In Turbid Water

Elephantnose retina

Fish have some of the most amazing retinas in the animal kingdom.  Like other fish species that live in environments with little to no light, the elephantnose fish (Gnathonemus petersii) use electrical fields to navigate through dark and murky waters.  However, unlike some of those species, the elephantnose fish has not lost its eyes through evolution and uses vision for some functions.

This paper published in Science back in May, 2012 by authors Moritz Kreysing, Roland Pusch, Dorothee Haverkate, Meik Landsberger, Jacob Engelmann, Janina Ruiter, Carlos Mora-Ferrer, Elke Ulbricht, Jens Grosche, Kristian Franze, Stefan Streif, Sarah Schumacher, Felix Makarov, Johannes Kacza, Jochen Guck, Hartwig Wolburg, James K. Bowmaker, Gerhard von der Emde, Stefan Schuster, Hans-Joachim Wagner, Andreas Reichenbach, and Mike Francke shows that the elephantnose fish has absolutely unique and interesting structures that optimize light capture ability and make them insensitive to spatial noise.  Also in the mesopic range they match the rod and cone opsin sensitivity curves allowing the use of both rods and cones throughout large ranges of light intensities, but importantly, arrange the cone photoreceptors in functional assemblies that act as photonic reflectors, creating lightwells in a sense that optimize photon capture.  The rod photoreceptors meanwhile are positioned *behind* the photonic lightwells or reflectors.  The result is that the photonic lightwells or reflectors become wavelength sensitive light intensifiers that functionally match the dynamic range of both rods and cones while boosting sensitivity in the red wavelengths that are the first wavelengths filtered out by water.  The thinking is that this allows the elephantnose fish to easily see large predators in murky or turbid environments.


Notable Paper: Paired-Pulse Plasticity In The Strength and Latency of Light-Evoked Lateral Inhibition to Retinal Bipolar Cell Terminals

Paired Pulse plasticity

I’ve been doing some reading in plasticity recently and found this paper in the Journal of Neuroscience by Evan Vickers, Mean-Hwan Kim, Jozsef Vigh, and Henrique von Gersdorff published last summer that looks at short term plasticity in the Inner Plexiform Layer mediating light adaptation.  Working in goldfish (Carassius auratus auratus) retina (an amazing retina), Vickers et. al. used patch clamp recordings on Mb bipolar cell terminals with paired-pulse light stimulation.  The idea was to examine and quantify plasticity in GABAergic lateral IPSCs with findings that show variation in the synaptic strength and latencies which correspond to adaptation and sensitization to surround temporal contrast.  The authors found that there are separate retinal circuitry pathways, each with differing mechanisms of plasticity that help to tune temporal response curves with glutamate release from ON bipolar cell terminals.  They conclude that “Short-term plasticity of L-IPSCs may thus influence the strength, timing, and spatial extent of amacrine and ganglion cell inhibitory surrounds”.


Interesting: The Spatial Organization Of Cholinergic Mosaics In The Adult Mouse Retina

Cholinergic Strettoi

This Short Communication published in the European Journal of Neuroscience back in 2000 by Lucia Galli-Resta, Elena Novelli, Maila Volpini and Enrica Strettoi was a paper I did not know existed.  That said, I ran into it the other day looking for some reference material and found it to be quite useful.  This communication represents an analysis of the cholinergic amacrine cell mosaics in the C57Bl6/J murine retina.  It served as a useful baseline for cell positioning, and cell mosaicing in both cholinergic arrays of the retina and is a nice analysis that should serve as a reference point for future genetic analysis studies in normal and pathological retinal tissues.  Enrica Strettoi’s laboratory has been carefully exploring the functional organization of the retina for some time now in the normal and pathological states and its always a joy to discover her work in the literature, even if it is 13 years old.


Seminar: Jennifer Ichida, Contextual Effect In Primary Visual Cortex: The Role Of The Surround In The Structure And Function Of Receptive Fields

Jennifer Ichida

Jennifer Ichida from the Angelucci laboratory will be delivering a seminar tomorrow, February 12th at 12:00 in the  John A. Moran Eye Center Auditorium.

Abstract:  Visual perception results from the activity of neuronal networks in the visual cortex.  A major challenge in visual neuroscience is to understand how these networks compute the responses of cortical neurons and perception.  The perception of a visual “figure” often relies upon the global spatial arrangement of its local elements.  In primary visual cortex, neurons respond best to oriented stimuli of optimal size inside their receptive field, but that response is modulated by larger stimuli involving the receptive field surround.  This surround modulation may underlie perceptual “figure-ground” segregation and other perceptual phenomena involving global-to-local computations.  The mechanisms and pathways underlying surround modulation are crucial for understanding vision and visual cortical computations.  As part of this goal, my research has focused on receptive fields in the visual system.  I will be presenting data from ongoing anatomical, electrophysiological and modeling studies that have revealed complex interactions involved in surround modulation as well as evidence for the circuits that underlie those functions.


NIH Competition Awards Prizes For Audacious Ideas In Vision Research


The National Institutes of Health has awarded prizes for audacious ideas in vision research to a number of investigators including our own Dr. Yingbin Fu at the Moran Eye Center.

A researcher at the John A. Moran Eye Center has been selected as one of 10 winners by the National Eye Institute (NEI), part of the National Institutes of Health.

Yingbin Fu, a Moran researcher and assistant professor of Ophthalmology and Visual Science at the University of Utah, is one of 10 winners of the Audacious Goals Challenge, a nationwide competition for compelling ideas to advance vision and science. Continue reading “NIH Competition Awards Prizes For Audacious Ideas In Vision Research”

Vogt Koyanagi Harada Syndrome (VKH)


This imagery is from a patient with Vogt Koyanagi Harada Syndrome (VKH).  VKH is a presumed autoimmune disease that presents with waxing and waning subretinal fluid.  There is chromic uveitis with other neurological and dermatological symptoms.  The precise mechanism of the disease is unknown, though it is thought that the autoimmune involvement of melanocytes in the uvea, skin, inner ear and CNS is mediated by  T helper cells.  The fundus photos above show the discoloration of the retina from fluid and the corresponding OCT below, shows the dark areas of fluid infiltration. Fundus photos were made by James Gilman of the Moran Eye Center and taken with a Zeiss FF-450+ and the OCT with with a Zeiss Stratus.

February VIG Meeting Announcement

2013-02-21VIG-Seminar Flyer

This is the first Vision Interest Group (VIG) notice here on Webvision.  The VIG is designed as a resource for students and post-docs to present their work/research to their contemporaries and all interested parties who wish to attend and participate.

The February VIG at the John A. Moran Eye Center will be held on February 21st from 12:00pm to 1:00pm in the John A. Moran Eye Center auditorium on the 1st floor.

Research Reports:
Patrick Gordon, Levine Lab, Grad Student:”Lhx2 balances self-renewal with neurogenic output and promotes competence state progression in retinal progenitor cells”

Jessica (Li) Jiang, Baehr Lab, Postdoc: “Heterotrimeric Kinesin-II is required for photoreceptor outer segment formation and maintenance”

Moderator: Peter Barabas, Postdoc from the Krizaj lab.

Pizza from The Pie is kindly provided by Dr. Robert E. Marc.


Continue reading “February VIG Meeting Announcement”