Ciliary Zonules

Ciliary zonules are a ring of fibrous structures anchoring the ciliary body with the lens of the eye.  These are the structures that help to maintain the position of the lens in the optical path, and anchor muscles that change the shape of the lens to alter focus.  When the ciliary muscles contract, the diameter of the ciliary muscle constricts, causing relaxation of the ciliary zonules and allowing the lens to become “thicker” which increases its refractive power allowing people to focus closer.

There is more discussion of ciliary zonules or zonnular fibers on Moran Core.  Be sure to check out some of the pathology images from damaged zonules here.

These images were found in an image storage archive here at the Moran Eye Center, and we do not have any information about their origin, or details of their capture.  They are however, excellent images and worthy of sharing.  My thanks to James Gilman for finding them.

 

 

Webvision Traveling To ARVO 2019

Webvision is off to ARVO 2019! We look forward to seeing the latest in retinal and vision research, talking with colleagues, and entertaining ideas for new chapters in Webvision from the community. Find us at the meeting via Twitter (@Webvision1) and propose an idea!

Looking forward to seeing you there.

New Postdoctoral Opportunity, University at Louisville

There are two postdoctoral opportunities in the laboratory of Maureen McCall at the University of Louisville.

 

    • Post Doctoral fellowships to work on animal-based research into inhibitory subunit receptor specific inhibition in the visual responses of retinal ganglion cells. We plan to use optical, molecular (including AAV manipulation of protein expression), and electrophysiological tools to understand the roles of different glycine receptor subunits in the visually evoked responses of retinal ganglion cells.
    • The McCall Laboratory is part of the University of Louisville Vision Science Center, which is a research group of 7 individuals who study visual function throughout the CNS. We are a multidisciplinary group whose research includes both basic and applied topics, involving visual processing in normal and diseased retina as well as other central visual targets. The VSC members have ongoing collaborations across labs.
    • The McCall has several on-going collaborations both within and outside University of Louisville and publications from the lab appear in a variety of neuroscience and vision related journals.
    • Two post docs are sought to join an going project, that has just received 5 years of funding from the NEI. In the project we will continue to examine the role of glycinergic inhibition in shaping the visual responses of retinal ganglion cells, a long term focus of the McCall lab. We will manipulate the expression of glycine subunit using molecular techniques and viral vectors. Experience in electrophysiological techniques, specifically whole cell patch clamp is required, although experience in retinal neuroscience is NOT. The opportunity to learn molecular biological, biochemical and imaging approaches is available.

 

Requirements:

ONLY PhDs with experience in electrophysiological and/or single cell functional imaging will be considered.

 

Other important requirements:

Highly motivated, team players.

Solid publication record.

Experience with whole cell patch clamp recordings.

All levels of experience are welcome and salary is commensurate with experience (NIH postdoctoral salary scale).

 

Application instructions:

 

Please send your CV which includes the name and contact information of at least two references , to:

 

Mo.mccall@louisville.edu

Webvision Updates: Now A Responsive Site

In Webvision news, we have gone through some changes here, mostly under the hood, though some will have changed the appearance of Webvision subtly.

Webvision has now migrated to a new server.  Most of the lifetime of Webvision has been running on Macintosh OSs of various flavors.  But with the deprecation of Apache in the latest OS X Server, the writing was on the wall and I moved Webvision to a new server, running Linux.  My thanks to the Moran Eye Center for helping with the costs of securing a new server.

Additionally, with consulting help from Anesti Creative, we have optimized Webvision, creating a responsive website for more platforms and increased the security, which these days unfortunately is necessary given the increased number of attacks literally every minute of the day from around the world.

We have endeavored to make this as easy as possible for end users, and hopefully these changes will result in an easier to use website, particularly from mobile devices and tablets.

Retinal Capillaries

Question: How small can the blood vessels in our retinas get?

Answer: Smaller than the diameter of a red blood cell (~6-8µm wide).

The red blood cells have to fold themselves to get through the tightest of spaces and line up, single file to get through the smallest retinal capillaries.

Image originally posted here.

David Carpenter, Maker Of Glass Eyes

Ocularists are specialists that mix art and science to create artificial eyes.  The profession has existed since the 5th century and is one we don’t often hear about, yet it is a service for people to create a cosmetic artificial replacement eye that is tremendously important. We’ve featured the work of David Carpenter before here on Webvision, and now there is a wonderful post over on Spitalfields Life about David Carpenter, the Chief Ocularist at the Moorfields Eye Hospital with wonderful photography by Patricia Niven (@PatriciaNiven).

Paul Witkovsky, Vision Scientist, Artist

PaulWitkovsky painting

Many vision scientists seem to have a penchant for creating art, and Dr. Paul Witkovsky is no exception.  Paul is a famous vision scientist that spent most of his career at NYU New York City in the department of Ophthalmology. His research spanned the fields of retinal physiology, retinal ultrastructure and pharmacology.

His major contribution has been in trying to understand the role of dopamine in the retina and its role in light adaptation and cone vision.  This work he has passed on to his academic progeny including David Krizaj here at the Moran Eye Center, Bill Brunken at SUNY and Jozsef Vigh at Colorado State University.

Paul has always been a “renaissance man” interested in travel, languages, music and art as well as science.  Above, you can see one of his recent abstract paintings (acrylic).

What It Looks Like To Be Colorblind, Part II


Screen-Shot-2016-09-07-at-7.17.37-PM

We’ve linked to posts before about what it looks like to people who are colorblind complete with animated gifs, but there is a new resource of gifs from the U.K.’s Clinic Compare that have a more film like quality and include a wider variety of color blindness forms.  We include a number of them below including green-blind/Deuteranopia, blue cone monochromacy, red-weak protanomaly, blue-blind/tritanomaly, green-weak deuteranomaly, monochromacy/acrhomatopsia, red-blind protanopia, and red-weak protanomaly.

gifs are rather large, so give them time to upload.

ht: @boingboing for the link.

Continue reading “What It Looks Like To Be Colorblind, Part II”