The Role of Dopamine in Retinal Function Abstract Dopamine (DA) is the major catecholamine in all vertebrate retinas including man. All vertebrates have dopaminergic neurons identified as amacrine cells (ACs) and interplexiform cells (IPCs), with great variations among different species. DA neurons are comparatively rare with density about 10-100 per mm2, which means that they …
Continue reading “The Role of Dopamine in Retinal Function By Elka Popova”
Ning Tian Introduction The neuronal information of the visual scene that is processed by the retina is conducted to the brain by a set of separate spatio-temporal synaptic pathways. The morphological basis for the formation of these parallel synaptic pathways is the laminar-specific structure of the retina, in which specific subtypes of retinal neurons …
Continue reading “Development of Retinal Ganglion Cell Dendritic Structure and Synaptic Connections by Ning Tian”
Donnell J. Creel 1. Introduction Electrophysiological testing of patients with retinal disease began in clinical departments in the late nineteen forties. Under the influence of the Swedish pioneers, Holmgren (1865) and Granit (1933), the electroretinogram was being dissected into component parts and early intraretinal electrode studies were beginning to tell which cells or cell …
Continue reading “The Electroretinogram and Electro-oculogram: Clinical Applications by Donnell J. Creel”
Ido Perlman 1. Historical view. As early as 1865 Holmgren found that a light stimulus could cause a change in the electrical potential of the amphibian eye. Shortly afterwards, similar findings were reported by Dewar from Scotland. He showed that light illumination through the pupil, which had previously been covered, caused a …
Continue reading “The Electroretinogram: ERG by Ido Perlman”
Stuart Trenholm1 and Gautam B. Awatramani2 1Assistant Professor, Montreal Neurological Institute, McGill University, Montreal, Canada: stuart.trenholm@mcgill.ca 2Associate Professor, Department of Biology, University of Victoria, Victoria, Canada: gautam@uvic.ca Abstract Gap junctions are recognized in the electron microscope as dense starchy areas of opposed membrane between two cells. Small tracer molecules such as Neurobiotin pass through the …
Continue reading “Myriad Roles for Gap Junctions in Retinal Circuits by Stuart Trenholm and Gautam B. Awatramani”
1 Introduction “Nothing in biology makes sense except in the light of evolution” (1). Theodosius Dobzhansky’s insight is especially apposite in trying to comprehend the nature of our rod and cone photoreceptors, and the organization of our retina. Unless we understand how these cells and structures arose, through hundreds of millions of years of evolution, …
Continue reading “Part XIV: Evolution of Phototransduction, Vertebrate Photoreceptors and Retina by Trevor Lamb”
Ralph Nelson 1. Overview. Ganglion cells are the final output neurons of the vertebrate retina. Ganglion cells collect information about the visual world from bipolar cells and amacrine cells (retinal interneurons). This information is in the form of chemical messages sensed by receptors on the ganglion cell membrane. Transmembrane receptors, in turn, transform …
Continue reading “Ganglion Cell Physiology by Ralph Nelson”